Revision checklist

CP2 Motion and Forces

CP2a Resultant forces

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Explain the difference between scalar and vector quantities.			
7 th	Use arrows to represent the direction and magnitude of forces.			
6 th	Define a resultant force.			
6 th	Calculate resultant forces.			
6 th	Explain whether forces on an object are balanced or unbalanced.			

CP2b Newton's First Law

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Describe the effect of balanced forces on moving and stationary objects.			
6 th	Describe the effect of a non-zero resultant force on moving and stationary objects.			
7 th	Describe circular motion at constant speed as a changing velocity and hence as an acceleration.			
7 th	Describe the force needed to keep an object moving in a circular path.			
8 th	Give some examples of objects moving in circular paths and the type of centripetal force involved.			

CP2c Mass and weight

Step	Learning outcome	Had a look	Nearly there	Nailed it!
4 th	Describe the difference between mass and weight.			
4 th	List the factors that determine the weight of an object.			
4 th	Recall the formula for calculating weight.			
6 th	Calculate weights using the formula.			
7 th	Change the subject of the weight formula to calculate mass or gravitational field strength.			

Edexcel GCSE (9-1)

Sciences

Revision checklist

CP2

CP2d Newton's Second Law

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Describe what an acceleration is.			
6 th	List the factors that affect the acceleration of an object.			
6 th	Recall the formula that relates the factors affecting acceleration.			
8 ch	Use the formula relating force, mass and acceleration.			
9 th	Change the subject of the formula relating force, mass and acceleration.			
7 th	Explain what inertial mass means.			

CP2e Newton's Third Law

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Describe what Newton's Third Law says.			
7 th	Recall the meaning of 'equilibrium situation'.			
8 th	Identify action-reaction pairs in familiar situations.			
8 th	Distinguish between action–reaction pairs and balanced forces.			
8 th	■ Describe how objects affect each other when they collide.			

CP2f Momentum

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Describe the factors that affect the momentum of an object.			
9 th	Calculate the momentum of moving objects.			
7 th	Recall what happens to momentum during a collision.			
9 th	Use the idea of conservation of momentum to calculate velocities of objects after collisions.			
10 th	Calculate the force needed to produce a change in momentum in a given time.			

Sciences

Revision checklist

CP2

CP2g Stopping distances

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Describe how human reaction times are measured.			
5 th	Recall typical human reaction times and the factors that affect them.			
5 ch	Describe the link between stopping distance, thinking distance and braking distance.			
5 th	Recall the factors that affect stopping distances.			
6 th	Describe how different factors affect stopping distances.			

CP2h Crash hazards

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Explain the meaning of a 'large deceleration'.			
6 th	Describe the dangers caused by large decelerations.			
7 th	Explain why large decelerations cause dangers.			
7 th	Recall some typical forces involved in road collisions.			
9th	■ Use knowledge of changes in momentum to estimate the forces involved in road collisions.			