CP12 Particle Model

CP12a Particles and density

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Describe the arrangements of particles in solids, liquids and gases.			
7th	Use the particle model to explain the different properties of solids, liquids and gases.			
Sth	Recall the formula relating density, mass and volume.			
7 th	Use the formula relating density, mass and volume.			
7 th	Use the particle model to explain why solids, liquids and gases have different densities.			
4 th	Describe what happens to the mass of a substance when it changes state.			

CP12b Energy and changes of state

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Explain how heating affects the particles in a substance or object, including changes of state.			
6 th	Describe how the temperature of an object changes with time while being heated or cooled to make it change state.			
6 th	Define the term specific heat capacity.			
6 th	Define the term specific latent heat.			
8 th	Explain the difference between specific heat capacity and specific latent heat.			
6 th	Explain ways of reducing unwanted energy transfer through thermal insulation.			

CP12c Energy calculations

Step	Learning outcome	Had a look	Nearly there	Nailed it!
81	Use the formula relating change in thermal energy, mass, temperature change and specific heat capacity.			
8th	Use the formula relating thermal energy, mass and specific latent heat.			
6	Recall that the value of specific latent heat for a substance is different for melting/solidifying and for evaporating/condensing.			

CP12d Gas temperature and pressure

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	Explain how the movement of particles causes gas pressure.			
6 th	Explain how changing the temperature of a gas affects the speed of its particles.			
6 th	Explain how temperature affects the pressure of a fixed mass of gas at constant volume.			
6**	Explain the significance of absolute zero.			
6 th	Convert temperatures between the Kelvin and Celsius temperature scales.			

CP13 Forces and Matter (Paper 6)

CP13a Bending and stretching

Step	Learning outcome	Had a look	Nearly there	Nailed it!
4 th	Explain that more than one force is needed to distort an object.			
4 th	Describe the difference between elastic and inelastic distortion.			
4 th	Describe the relationship between force and extension for a spring.			
4 th	Describe the relationship between force and extension for a rubber band.			
6 th	Compare the force–extension relationship for different objects.			

CP13b Extension and energy transfers

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Recall the equation that links force, extension and the spring constant.			
7 th	Use the formula relating force, extension and spring constant.			
5 th	Recall that work has to be done to stretch a spring.			
7th	Use the formula relating the energy transferred to the extension of a spring.			