SC14 Quantitative Analysis

SC14a Yields

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 ^{ch}	State what is meant by the theoretical yield of a reaction.			
5 th	State what is meant by the actual yield of a reaction.			
8 th	Calculate the percentage yield of a reaction.			
6 th	Understand that the actual yield is always less than the theoretical yield of a reaction.			
6 th	Describe some reasons why the actual yield is less than the theoretical yield of a reaction.			

SC14b Atom economy

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Recall the formula for calculating atom economy.			
9 th	Calculate the atom economy for forming a desired product in a reaction.			
7 th	Explain how atom economy and yield determine the choice of reaction pathway.			
7 th	Explain how the usefulness of by-products determines the choice of reaction pathway.			

SC14c Concentrations

Step	Learning outcome	Had a look	Nearly there	Nailed it!
4 th	■ State the meaning of the term concentration.			
6 th	⊞ Calculate concentration in g dm ⁻³ .			
6 th	⊞ Calculate concentration in mol dm⁻³.			
8 th	□ Convert concentration in g dm ⁻³ into concentration in mol dm ⁻³ .			
9th	□ Convert concentration in mol dm ⁻³ into concentration in g dm ⁻³ .			

SC14d Titrations and calculations

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Describe the steps in carrying out an acidalkali titration.			
7 th	■ Calculate the number of moles of solute in a given volume of solution.			
9 th	■ Deduce the mole ratio of acid to alkali from a balanced equation.			
9 th	Calculate the concentration of a solution using the results of an acid-alkali titration.			
9th	Calculate the volume of solution required in an acid-alkali titration, given the concentrations of both the acid and the alkali.			

SC14e Molar volume of gases

Step	Learning outcome	Had a look	Nearly there	Nailed it!
6 th	■ Describe what is meant by the molar volume of a gas.			
8 th	■ Use the molar volume in calculations involving solids and gases in reactions.			
6 th	☐ Recall Avogadro's law.			
9 th	■ Use Avogadro's law to calculate the volumes of reacting gases.			

SC15

SC15 Dynamic Equilibria, Calculations Involving Volumes of Gases

SC15a Fertilisers and the Haber process

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Recall some compounds found in fertilisers.			
7 th	Describe and compare small-scale and large- scale production of ammonium sulfate.			
6 th	Describe how ammonium nitrate is made using ammonia produced by the Haber process.			

SC15b Factors affecting equilibrium

Step	Learning outcome	Had a look	Nearly there	Nailed it!
7 th	Describe how changing the reaction conditions affects the relative amount of substances in an equilibrium mixture.			
8 th	Predict how different conditions affect how quickly equilibrium is reached.			
8 th	Explain how the conditions are chosen for industrial reactions.			
9th	Explain how the rate of reaction and equilibrium position determine the choice of reaction pathway.			

SC16

SC16 Chemical Cells and Fuel Cells

SC16a Chemical cells and fuel cells

Step	Learning outcome	Had a look	Nearly there	Nailed it!
5 th	Recall why a chemical cell eventually stops producing a voltage.			
4 th	Recall the main features of a hydrogen—oxygen fuel cell.			
8 th	Evaluate the use of fuel cells for different purposes.			